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Abstract Reconstructions of ocean temperatures prior to the industrial era serve to constrain natural
climate variability on decadal to centennial timescales, yet relatively few such observations are available
from the west Pacific Warm Pool. Here we present multiple coral-based sea surface temperature
reconstructions from Yongle Atoll, in the South China Sea over the last ~1,250 years (762–2013 Common Era
[CE]). Reconstructed coral Sr/Ca-sea surface temperatures indicate that the “Little Ice Age (1711–1817 CE)”
period was ~0.7°C cooler than the “Medieval Climate Anomaly (913-1132 CE)” and that late 20th century
warming of the western Pacific is likely unprecedented over the past millennium. Our findings suggest that
the Western Pacific Warm Pool may have expanded (contracted) during the Medieval Climate Anomaly
(Little Ice Age), leading to a strengthening (weakening) of the Asian summer monsoon, as recorded in
Chinese stalagmites.

Plain Language Summary Tropical Pacific climate variability influences global climate system on
interannual and longer timescales. In contrast to the eastern and central tropical Pacific, where paleo–sea
surface temperature data are relatively abundant, such data are fairly sparse in the western tropical Pacific,
which limits our understanding of Pacific Warm Pool and its role in low-frequency climate variability. Here we
present a multiple coral-based estimates of monthly resolved sea surface temperature from the Yongle Atoll,
South China Sea, that span segments of the last 1,250 years. We demonstrate significant variations in
mean sea surface temperature over this period—with warmer conditions during the so-called “Medieval
Climate Anomaly” and cooler conditions during the so-called “Little Ice Age,” in keeping with compilations of
Northern Hemisphere temperature over this period. Our data also reveal unprecedented warming of sea
surface temperatures in the late 20th century and early 21st century that are unprecedented in the past
1,250 years. We believe that our manuscript will be of broad interest to geologists, climatologists, and coral
reef scientists, given the paucity of climate records from the region.

1. Introduction

Proxy reconstructions and model simulations of climate variability over the last millennium have aimed to
distinguish natural climate variability from anthropogenic climate signals on interannual, decadal, to cen-
tennial timescales (Jones & Mann, 2004, and references therein; Mann et al., 2009). Three notable climate
epochs, the Medieval Climate Anomaly (MCA, roughly 900–1200 Common Era [CE]), the Little Ice Age (LIA,
roughly 1500–1800 CE), and 20th century warming describe the main features of Northern Hemisphere
temperatures over the last millennium (Mann et al., 1999; Mann & Jones, 2003; Osborn & Briffa, 2006).
Hemispheric-scale warming during the MCA and cooling during the LIA are linked to change in solar
and volcanic forcing (e.g., Mann et al., 1999, 2009; PAGES 2k Consortium, 2015), while recent warming
reflects the response to anthropogenic greenhouse gas emissions (Intergovernmental Panel on Climate
Change Fifth Assessment Report, 2014). However, the global extent and magnitude of the MCA and LIA
periods remain unclear, especially across the tropical oceans (McGregor et al., 2015; PAGES 2k
Consortium, 2015).

Tropical Pacific climate variability influences global climate on interannual and longer timescales (Alexander
et al., 2002; Cobb et al., 2001; Hendy et al., 2002). Therefore, determining the historical natural variability of
tropical Pacific climate and controls is of particular importance for predicting future changes in response
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to continued greenhouse forcing. Debates on the sea surface temperature (SST) variability and
corresponding climatic mean state in the tropical Pacific over the last millennium are ongoing. Evidence
from coral cores (Cobb et al., 2003), sediment cores (Salvatteci et al., 2014), multiproxy reconstructions
(Mann et al., 2009), and climate modeling (Goodwin et al., 2014) suggest the tropical Pacific experienced a
cool and possibly dry “La Niña-like” mean state during the MCA interval and a more “El Niño-like”
condition in the LIA. Further support for this hypothesis comes from evidence of widespread droughts in
the western America during the Mediaeval period, which are suggested to be linked to an anomalously cold
tropical Pacific (Booth et al., 2006; Graham et al., 2007; Herweijer et al., 2006; MacDonald, 2007). However, sig-
nals from lake sediments in the eastern Pacific indicate a warm period that is more closely related to El Niño-
dominated conditions during the MCA period (Fletcher & Moreno, 2012; Ledru et al., 2013; Yan et al., 2011).
Furthermore, speleothem records from Indonesia clearly show an El Niño-dominated MCA, related to a weak-
ening of the Pacific Walker circulation and a dry condition (Griffiths et al., 2016).

The tropical western Pacific, especially the Western Pacific Warm Pool (WPWP), is subject to large SST varia-
tions on interannual timescales in conjunction with the El Niño-Southern Oscillation (Delcroix & McPhaden,
2002; Picaut et al., 1996; Wang et al., 1999). Western Pacific tropical SSTs are closely related to the East
Asian monsoon system, which has a notable impact on the climate variability in East Asia. While high-
resolution proxy records of climate variability have been reconstructed from the tropical eastern and central
Pacific (e.g., Carré et al., 2014; Cobb et al., 2003; Conroy et al., 2009), climatic reconstructions from the western
Pacific are sparse. In complementing speleothems, tree rings, ice cores, and historical documents that are
commonly used in paleoclimate composites from temperate regions, SST proxies (e.g., Sr/Ca and δ18O) in
long-lived corals, and bivalves have proven useful in reconstructing interannual to decadal-scale climate vari-
abilities in the tropical Pacific (Cobb et al., 2013; McGregor et al., 2013; Nurhati et al., 2011; Tierney et al., 2015).
Individual coral (or bivalve) records are typically decades long, and reconstructing millennial-scale variations
from such records often requires large numbers of samples and associated radiometric dates. Coral and
bivalve reconstructions are often based on a small number of samples (Deng et al., 2017; Yan et al., 2014,
2015), which likely underestimate the full range of climate variability during a given period. Here we present
multiple coral-based SST reconstructions from the Yongle Atoll, western Pacific (Figure 1), that date from 762
to 2013 CE, as determined by high-precision U-Th dating.

Figure 1. Maps of the study sites. (top) The picture shows the location of sampling sites with monthly (June) climatological SST (°C) based on Reynolds and Smith
Optimum Interpolation Sea Surface Temperature version 2 data (Reynolds et al., 2002) using the 1971–2000 base period. Yongle Atoll is at the northern edge of
the Western Pacific Warm Pool in summer. (bottom) The left picture shows the Porites rubble collection sites at the Yongle Atoll and the right picture shows the
fieldworks of fossil sample collection on the Chenhang Island.
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2. Materials and Methods

Fieldwork was conducted at Yongle Atoll (Figure 1). We recovered cores from four modern Porites coral colo-
nies and dozens of approximately 7- to 20-year-long fossil Porites rubble at Lingyang Reef and Chenhang
Island (Figure 1). Based on diagenetic investigations (X-ray diffraction and scanning electron microscopy;
supporting information) and U-Th ages (Table S2), we selected 19 fossil coral samples ranging from 762 to
1817 CE for millimeter-scale Sr/Ca analyses measured by ICP-OES (see the “supporting information” for the
further details). Precision for the coral Sr/Ca analyses was 0.014 mmol/mol (1σ), as determined by analyses
of repeat standards. The age model for the modern corals was established on the basis of comparing the
pronounced seasonal cycles in the Sr/Ca records with corresponding peaks and troughs in SST.
Reconstructions of paleo-SST from fossil corals were based upon the calibration between four individual
modern Porites coral Sr/Ca records and instrumental SST across the 1987 to 2013 interval (Figure 2 and the
supporting information).

3. Results

Both modern and fossil corals exhibit clear seasonal cycles in Sr/Ca profiles (Figures 2a and S3). Geochemical
proxies in Porites corals seem sensitive to growth rate-related “vital effects” (Cohen et al., 2001; de Villiers
et al., 1995), which could cause uncertain biases in paleo-SST reconstructions with single Porites. To calculate
the “intercolony” offsets associated with vital effects in the modern Porites Sr/Ca, each individual Sr/Ca time
series was centered by removing the mean value in the overlapping interval (2011–2013). The absolute value
of the offsets range from 0.013 to 0.027 mmol/mol (Figure 2), yielding relative uncertainties ±0.22–0.45°C

Figure 2. Sr/Ca records of themodern corals. (a) Plot of the original coral Sr/Ca records after applying offsets to match the mean Sr/Ca values in overlapping intervals.
(b) Comparison of the stacked coral Sr/Ca record and instrumental bimonthly Extended Reconstructed Sea Surface Temperature version 4 data. Results suggest
that Sr/Ca variability here is strongly a function of sea surface temperature (SST). (c) Regression between the stacked coral Sr/Ca record and Extended Reconstructed
Sea Surface Temperature version 4 time series. The dashed lines indicate 95% confidence interval. Strong correlation (R2 = 0.86, n = 156) between the coral Sr/Ca and
instrumental SST records confirms the fidelity of the Sr/Ca-derived SST proxy at this site. The equation is Sr/Ca = �0.0556(±0.0016) × SST + 10.052(±0.046). This
slope is very close to the mean value (�0.06 mmol/mol °C�1) of Pacific Porites suggested by Corrège (2006).
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(±0.33°C on average) according to the general sensitivity of 0.06 mmol/mol per 1°C for the tropical Pacific
Porites (Corrège, 2006). Stacking of multiple records can effectively minimize individual biases referred to
vital effects and eventually increase the accuracy of reconstructions. The composite average was then
calculated from the four individual Sr/Ca time series from 1987 to 2013 (Figure 2b). The composite modern
coral Sr/Ca record was significantly correlated with instrumental SST (R2 = 0.86; Figure 2c), demonstrating
that coral Sr/Ca can be used as a reliable proxy of SST variability at our site. Similarly, Sr/Ca records in
multiple fossil Porites were used in this study to indicate substantial SST variability in the tropical western
Pacific over the past 1,250 years (Figure 3c). Average Sr/Ca values from the MCA (8.575 mmol/mol,
~900–1150 CE) are slightly (analysis of variance, F = 9.497, p < 0.05) higher than that in the modern
(8.515 mmol/mol, 1987–2013 CE) corals, but significantly (analysis of variance, F = 37.606, p < 0.001) lower
than Sr/Ca values during the LIA (8.614 mmol/mol, 1711–1817 CE), suggesting that the MCA was a warm
period relative to the LIA. The mean SSTs in the MCA and LIA were calculated based on bulk Sr/Ca values
in each period and modern Sr/Ca-SST calibration. The uncertainty resulting from the Sr/Ca analyses and
the Sr/Ca-SST calibration was estimated by the Monte-Carlo simulations, and the compounded error for
reconstructed Sr/Ca-SSTs by adding the intercolony offsets related to vital effects was 0.5°C (1σ; see
supporting information).

4. Discussion

Our coral Sr/Ca records over the last 1,250 years (Figure 3c) are largely consistent with the foraminiferal
Mg/Ca-SST records from the Makassar Strait, Indo-Pacific warm pool (Oppo et al., 2009; Figure 3d), and are
in broad agreement with long-term trends in surface temperature reconstructions from Asia and the
Northern Hemisphere (Figure 3b) during the last millennium. This suggests that the climate in the tropical
western Pacific was controlled by hemispherical or global forcing factors (e.g., solar forcing) at centennial
to millennial timescales. Our long-term coral Sr/Ca records indicate that SST in the Western Pacific was signif-
icantly cooler during the LIA than either modern or MCA periods. The low Sr/Ca values observed in the

Figure 3. Comparison of coral-based records and other paleo-sequences of tropical Pacific and Northern Hemisphere climate during the last millennium. (a) Global
stratospheric volcanic sulfate aerosol injection (Gao et al., 2008) and tropical volcanic radiative forcing (Mann et al., 2005). (b) Multiproxy reconstructed Northern
Hemisphere and Asia temperature anomalies. (c) Fossil and stacked modern coral Sr/Ca records in this study. The red lines illustrate the five-year running mean data.
Raw Sr/Ca data from fossil corals are shown in Figure S3. The points represent mean Sr/Ca values from the “low-resolution” samples (see the supporting information).
The overview of coral records is shown in Table S1. (d) Foraminifera Mg/Ca-based sea surface temperatures from the Makassar Strait, Indo-Pacific warm pool
(Oppo et al., 2009). (e) Coral δ18O records from the Palmyra Island (Cobb et al., 2003).
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modern record indicate that sustained periods of warmer SST in the late 20th/early 21st is unprecedented
over the last 1,250 years. Based on the calibration between modern coral Sr/Ca and instrumental Extended
Reconstructed Sea Surface Temperature version 4, the reconstructed mean SSTs in the MCA (913–1132 CE)
and LIA (1711–1817 CE) are 26.5 and 25.8°C, respectively, which are ~0.7 and ~1.4°C lower than the average
annual temperatures derived from the local Extended Reconstructed Sea Surface Temperature version 4
record of the 20th century (27.2°C, 1901–2000 CE; Figure S4). Our finding of warmer SSTs in the 20th/21st
centuries and MCA period and cooler SSTs during the LIA is broadly consistent with other records from the
western Pacific region. For example, SST during the MCA in the Southern Okinawa Trough (East China Sea)
was 25.7°C, 0.4°C lower than that in the 20th century (Wu et al., 2012). Similarly, planktonic foraminiferal
Mg/Ca-SST records from the Makassar Strait (Indonesia) showed warm temperatures and high salinities
occurred during the MCA, while the SSTs during the LIA were ~1.5°C cooler than present (Newton et al.,
2006). At New Caledonia, southwest tropical Pacific, surface temperatures from 1701 to 1761 CE were on
average 1.4°C cooler than present (Corrège et al., 2001). Even in the central tropical Pacific, coral Sr/Ca-SST
records indicate that temperatures were ~1.7°C cooler during the LIA (1630–1703 CE) compared with the late
20th century (Sayani et al., 2015).

Higher coral δ18O values (928–961 CE and 1149–1220 CE; Cobb et al., 2003; Figure 3e) and negative diatom
T/E index (~1000–1300 CE; Conroy et al., 2009) indicate that the MCA was a relatively cool and/or dry period,
potentially related to a persistent La Niña conditions in the tropical Pacific. The La Niña-like mean state, cor-
responding with an anomalously strong Pacific zonal SST gradient, was attributed to a combination of rela-
tively high solar irradiance (Emile-Geay et al., 2013; Mann et al., 2009), inactive tropical volcanism (Mann
et al., 2009), and enhanced Atlantic meridional overturning circulation (Trouet et al., 2009). The warmer SST
in the western Pacific over the MCA (Figures 3c and 3d), combined with the cooler SSTs in the central and
eastern Pacific (Cobb et al., 2003; Conroy et al., 2009), is compatible with the La Niña-like mean state related
to an enhanced zonal temperature gradient, similar to the La Niña events according to modern instrumental
observations (Wang et al., 1999). However, simulations with Community Climate System Model version 4 did
not reproduce a cooling in the Niño 3.4 region during the MCA relative to the LIA (Landrum et al., 2013).
Similarly, foraminifera Mg/Ca records from the Galápagos sediment cores revealed warm SSTs at the peak
of the MCA (~950–1150 CE; Rustic et al., 2015), consistent with evidence for a more frequent El Niño pattern
in the eastern equatorial Pacific during the MCA relative to the LIA (Conroy et al., 2008; Moy et al., 2002). In
summary, more high-resolution paleodata are needed over the last millennia to resolve these apparent con-
flicts, particularly in the eastern and central tropical Pacific regions.

Two periods of positive Sr/Ca anomalies, potentially reflecting relatively cool periods of 30–60 years in dura-
tion, were evident during the MCA (~950 CE and ~1300 CE). The short-lived cold period around ~950 CE
based on our coral Sr/Ca records (~945–972 CE; Figure 3c) associated with anomalously low SST (25.3°C on
average) is generally consistent with the central Pacific coral record (Cobb et al., 2003; Figure 3e) and the
western Pacific Mg/Ca-SST profile (Oppo et al., 2009; Figure 3d). However, this period is absent from the east-
ern Pacific records derived from Mg/Ca-SST (Rustic et al., 2015). It is unclear whether this is because the cold
period is absent from the eastern Pacific or alternatively whether this reflects low resolution in the eastern
Pacific SST reconstructions. Although the origin of this anomaly is unknown, it is unlikely to be associated
with volcanic activities, as volcanic forcing was relatively weak around 950 CE (Figure 3a). The second cold
period around 1300 CE (~1279–1335 CE; Figure 3c) associated with anomalously low SST (25.5°C on average)
is in agreement with the Niño3.4 Community Climate System Model version 4 simulation (Landrum et al.,
2013), which simulated a 1.0–1.5°C cooling during this time. Nunn (2007, 2012) defined this period of rapid
cooling (~1250–1350 CE) as the “CE 1300 Event” and reported that around 1300 CE, the entire Pacific Basin
was affected by comparatively rapid cooling, sea level fall (70–80 cm), and a food crisis for coastal dwellers
throughout the tropical Pacific Islands. This cold event is likely associated with a period of large volcanic
eruptions during the 13th century (Landrum et al., 2013), including the largest eruption of the last
millennium, which occurred in 1259 CE, together with four moderate to large eruptions in 1228 CE,
1268 CE, 1275 CE, and 1285 CE (Gao et al., 2008).

The WPWP’s vast moisture and heat exchange strongly influence global climate and play a crucial role as a
“switch” in moisture supply for precipitation in East Asia after the onset of the Asian summer monsoon
(Ding & Chan, 2005). Our study site Yongle Atoll sits near the north margin of the WPWP (Figure 1), where
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SST is sensitive to changes in the temperature, position, and size of WPWP. During the modern warmth, the
Warm Pool has extended both latitudinally and longitudinally concurrent with significant surface warming
and freshening (Cravatte et al., 2009). During the MCA, our data show that with the exception of the
~950 CE cooling anomaly, the WPWP expanded beyond the Yongle Atoll, indicating a northward expansion
of the WPWP. Stalagmite δ18O records (Zhang et al., 2008) indicate a strengthened summer monsoon during
the MCA, indicating some support for warmer WPWP SSTs driving enhanced monsoonal circulation during
this time. Indeed, peat pollen (Ren, 1998) and lake sediments (Ji et al., 2005; Liu et al., 2011) also reflect rela-
tively abundant precipitation in China during the MCA. Foraminiferal evidence for a more northerly position
of the Intertropical Convergence Zone during the MCA is also consistent with this framework (Newton et al.,
2006). During the LIA, the seasonal Sr/Ca-SST amplitude was relatively larger (3.0 ± 1.1°C) than during the
MCA (2.5 ± 1.1°C), which is mainly associated with the low winter SSTs (Figure S4).We suggest that cool
conditions at our study sites during the LIA are related to a contraction of the WPWP following the MCA,
associated with a strengthened winter monsoon (Qiao et al., 2011; Yang et al., 2015) and more southerly
position of the Intertropical Convergence Zone (Richey & Sachs, 2016).

5. Conclusions

We present a new coral-based SST reconstruction from the West Pacific Warm Pool spanning multiple centu-
ries over the period from 762 to 2013 CE. Our coral Sr/Ca profile is consistent with the foraminifera Mg/Ca-SST
time series in the Makassar Strait (Oppo et al., 2009), and both track Northern Hemisphere temperatures on
centennial timescales, consistent with a dominant role for external climate forcings (solar and volcanic
variabilities) in driving low-frequency SST variations in this region. Modern coral-based estimates of SST
during the late 20th century and early 21st century indicate a period of warm SST that is likely unprecedented
in the western Pacific region throughout the last 1,250 years, in line with many other studies that highlight
the dominant role of anthropogenic greenhouse forcing in driving recent ocean warming.
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